Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.238
Filtrar
1.
Front Nutr ; 11: 1352938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559779

RESUMO

Development of simple and reliable sensor for detecting vitamin content is of great significance for guiding human nutrition metabolism, overseeing the quality of food or drugs, and advancing the treatment of related diseases. In this work, a simple electrochemical sensor was conveniently fabricated by modification a carbon electrode with vertically-ordered mesoporous silica film (VMSF), enabling highly sensitive electrochemical detection of vitamin B2 (VB2) based on the dual enrichment of the analyte by the supporting electrode and nanochannels. The widely used glassy carbon electrode (GCE), was preactivated using simple electrochemical polarization, The resulting preactivated GCE (p-GCE) exhibited improved potential resolution ability and enhanced peak current of VB2. Stable modification of VMSF on p-GCE (VMSF/p-GCE) was achieved without introducing another binding layer. The dual enrichment effect of the supporting p-GCE and nanochannels facilitated sensitive detection of VB2, with a linear concentration ranged from 20 nM to 7 µM and from 7 µM to 20 µM. The limit of detection (LOD), determined based on a signal-to-noise ratio of three (S/N = 3), was found to be 11 nM. The modification of ultra-small nanochannels of VMSF endowed VMSF/p-GCE with excellent anti-interference and anti-fouling performance, along with high stability. The constructed sensor demonstrated the capability to achieve direct electrochemical detection of VB2 in turbid samples including milk and leachate of compound vitamin B tablet without the need for complex sample pretreatment. The fabricated electrochemical can be easily regenerated and has high reusability. The advantages of simple preparation, high detection performance, and good regeneration endow the constructed electrochemical sensor with great potential for direct detection of small molecule in complex samples.

2.
J Biomed Opt ; 29(3): 036005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38560531

RESUMO

Significance: Color differences between healthy and diseased tissue in the gastrointestinal (GI) tract are detected visually by clinicians during white light endoscopy; however, the earliest signs of cancer are often just a slightly different shade of pink compared to healthy tissue making it hard to detect. Improving contrast in endoscopy is important for early detection of disease in the GI tract during routine screening and surveillance. Aim: We aim to target alternative colors for imaging to improve contrast using custom multispectral filter arrays (MSFAs) that could be deployed in an endoscopic "chip-on-tip" configuration. Approach: Using an open-source toolbox, Opti-MSFA, we examined the optimal design of MSFAs for early cancer detection in the GI tract. The toolbox was first extended to use additional classification models (k-nearest neighbor, support vector machine, and spectral angle mapper). Using input spectral data from published clinical trials examining the esophagus and colon, we optimized the design of MSFAs with three to nine different bands. Results: We examined the variation of the spectral and spatial classification accuracies as a function of the number of bands. The MSFA configurations tested showed good classification accuracies when compared to the full hyperspectral data available from the clinical spectra used in these studies. Conclusion: The ability to retain good classification accuracies with a reduced number of spectral bands could enable the future deployment of multispectral imaging in an endoscopic chip-on-tip configuration using simplified MSFA hardware. Further studies using an expanded clinical dataset are needed to confirm these findings.


Assuntos
Endoscopia Gastrointestinal , Neoplasias , Humanos , Diagnóstico por Imagem , Esôfago
3.
Food Chem X ; 22: 101322, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38562183

RESUMO

Wheat is a vital global cereal crop, but its susceptibility to contamination by mycotoxins can render it unusable. This study explored the integration of two novel non-destructive detection methodologies with convolutional neural network (CNN) for the identification of zearalenone (ZEN) contamination in wheat. Firstly, the colorimetric sensor array composed of six selected porphyrin-based materials was used to capture the olfactory signatures of wheat samples. Subsequently, the colorimetric sensor array, after undergoing a reaction, was characterized by its near-infrared spectral features. Then, the CNN quantitative analysis model was proposed based on the data, alongside the establishment of traditional machine learning models, partial least squares regression (PLSR) and support vector machine regression (SVR), for comparative purposes. The outcomes demonstrated that the CNN model had superior predictive performance, with a root mean square error of prediction (RMSEP) of 40.92 µ g ∙ kg-1 and a coefficient of determination on the prediction (RP2) of 0.91. These results affirmed the potential of integrating colorimetric sensor array with near-infrared spectroscopy in evaluating the safety of wheat and potentially other grains. Moreover, CNN can have the capacity to autonomously learn and distill features from spectral data, enabling further spectral analysis and making it a forward-looking spectroscopic tool.

4.
J Agric Food Chem ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564679

RESUMO

This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.

5.
Mol Carcinog ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558423

RESUMO

Epithelial ovarian cancers that are nonhomologous recombination deficient, as well as those that are recurrent and in a platinum-resistant state, have limited therapeutic options. The objectives of this study were to characterize the mechanism of action and investigate the therapeutic potential of a small molecule, VDX-111, against ovarian cancer. We examined the ability of VDX-111 to inhibit the growth of a panel of ovarian cancer cell lines, focusing on BRCA wild-type lines. We found that VDX-111 causes a dose-dependent loss of cell viability across ovarian cancer cell lines. Reverse phase protein array (RPPA) analysis was used to identify changes in cell signaling in response to VDX-111 treatment. An RPPA analysis performed on cells treated with VDX-111 detected changes in cell signaling related to autophagy and necroptosis. Immunoblots of OVCAR3 and SNU8 cells confirmed a dose-dependent increase in LC3A/B and RIPK1. Incucyte live cell imaging was used to measure cell proliferation and death in response to VDX-111 alone and with inhibitors of apoptosis, necroptosis, and autophagy. Annexin/PI assays suggested predominantly nonapoptotic cell death, while real-time kinetic imaging of cell growth indicated the necroptosis inhibitor, necrostatin-1, attenuates VDX-111-induced loss of cell viability, suggesting a necroptosis-dependent mechanism. Furthermore, VDX-111 inhibited tumor growth in patient-derived xenograft and syngeneic murine models. In conclusion, the cytotoxic effects of VDX-111 seen in vitro and in vivo appear to occur in a necroptosis-dependent manner and may promote an antitumor immune response.

6.
Front Oncol ; 14: 1371980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571499

RESUMO

Introduction: Alterations of the NUP214 gene (9q34) are recurrent in acute leukemias. Rearrangements of chromosomal band 9q34 targeting this locus can be karyotypically distinct, for example t(6;9)(p22;q34)/DEK::NUP214, or cryptic, in which case no visible change of 9q34 is seen by chromosome banding. Methods: We examined 9 cases of acute leukemia with NUP214 rearrangement by array Comparative Genomic Hybridization (aCGH), reverse-transcription polymerase chain reaction (RT-PCR), and cycle sequencing/Sanger sequencing to detect which fusion genes had been generated. Results: The chimeras DEK::NUP214, SET::NUP214, and NUP214::ABL1 were found, only the first of which can be readily detected by karyotyping. Discussion: The identification of a specific NUP214 rearrangement is fundamental in the management of these patients, i.e., AMLs with DEK::NUP214 are classified as an adverse risk group and might be considered for allogenic transplant. Genome- and/or transcriptome-based next generation sequencing (NGS) techniques can be used to screen for these fusions, but we hereby present an alternative, step-wise procedure to detect these rearrangements.

7.
Cell Rep ; 43(4): 114012, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38578428

RESUMO

PURPOSE: High-grade serous ovarian cancer (HGSC) is the most common ovarian cancer subtype. Parity is an important risk-reducing factor, but the underlying mechanism behind the protective effect is unclear. Our aim was to study if the expression of hormones and proteins involved in pregnancy were affected by the woman's parity status, and if they may be associated with tumor stage and survival. METHODS: We evaluated expression of progesterone receptor (PR), progesterone receptor membrane component 1 (PGRMC1), relaxin-2, and transforming growth factor beta 1 (TGFß1) in tumor tissue from 92 women with HGSC parous (n = 73) and nulliparous (n = 19). Key findings were then evaluated in an independent expansion cohort of 49 patients. Survival rates by hormone/protein expression were illustrated using the Kaplan-Meier method. The independent prognostic value was tested by Cox regression, using models adjusted for established poor-prognostic factors (age at diagnosis, FIGO stage, type of surgery, and macroscopic residual tumor after surgery). RESULTS: HGSC tumors from parous women were PR positive (≥ 1% PR expression in tumor cells) more often than tumors from nulliparous women (42% vs. 16%; p-value 0.04), and having more children was associated with developing PR positive tumors [i.e., ≥ 3 children versus nulliparity, adjusted for age at diagnosis and stage: OR 4.31 (95% CI 1.12-19.69)]. A similar result was seen in the expansion cohort. Parity status had no impact on expression of PGRMC1, relaxin-2 and TGFß1. No associations were seen with tumor stage or survival. CONCLUSION: Tumors from parous women with HGSC expressed PR more often than tumors from nulliparous women, indicating that pregnancies might possibly have a long-lasting impact on ovarian cancer development.

9.
ACS Sens ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598846

RESUMO

Arrays of cross-reactive sensors, combined with statistical or machine learning analysis of their multivariate outputs, have enabled the holistic analysis of complex samples in biomedicine, environmental science, and consumer products. Comparisons are frequently made to the mammalian nose or tongue and this perspective examines the role of sensing arrays in analyzing food and beverages for quality, veracity, and safety. I focus on optical sensor arrays as low-cost, easy-to-measure tools for use in the field, on the factory floor, or even by the consumer. Novel materials and approaches are highlighted and challenges in the research field are discussed, including sample processing/handling and access to significant sample sets to train and test arrays to tackle real issues in the industry. Finally, I examine whether the comparison of sensing arrays to noses and tongues is helpful in an industry defined by human taste.

10.
J Magn Reson ; 362: 107669, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598991

RESUMO

MRI systems have a thin conducting layer placed between the gradient and RF coils, this acts as a shield at the RF-frequency, minimizing noise coupled into the experiment, and decreasing the coupling between the RF and gradient coils. Ideally, this layer should be transparent to the gradient fields to reduce eddy currents. In this work the design of such a shield, specifically for low-field point-of-care Halbach based MRI devices, is discussed. A segmented double layer shield is designed and constructed based on eddy current simulations. Subsequently, the performance of the improved shield is compared to a reference shield by measuring the eddy current decay times as well as using noise measurements. A maximum reduction factor of 2.9 in the eddy current decay time is observed. The segmented shield couples in an equivalent amount of noise when compared to the unsegmented reference shield. Turbo spin echo images of a phantom and the brain of a healthy volunteer show improvements in terms of blurring using the segmented shield.

11.
J Electromyogr Kinesiol ; 76: 102884, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593582

RESUMO

The use of surface electromyography in the field of animal locomotion has increased considerably over the past decade. However, no consensus exists on the methodology for data collection in horses. This study aimed to start the development of recommendations for bipolar electrode locations to collect surface electromyographic data from horses during dynamic tasks. Data were collected from 21 superficial muscles of three horses during trot on a treadmill using linear electrode arrays. The data were assessed both quantitatively (signal-to-noise ratio (SNR) and coefficient of variation (CoV)) and qualitatively (presence of crosstalk and activation patterns) to compare and select electrode locations for each muscle. For most muscles and horses, the highest SNR values were detected near or cranial/proximal to the central region of the muscle. Concerning the CoV, there were larger differences between muscles and horses than within muscles. Qualitatively, crosstalk was suspected to be present in the signals of twelve muscles but not in all locations in the arrays. With this study, a first attempt is made to develop recommendations for bipolar electrode locations for muscle activity measurements during dynamic contractions in horses. The results may help to improve the reliability and reproducibility of study results in equine biomechanics.

12.
Food Chem ; 449: 139264, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38593724

RESUMO

In this study, a microelectrode array sensor based on boron and nitrogen co-doped vertical graphene (BNVG) was assembled to quantify salicylic acid (SA) in living plants. The influence of B and N contents on the electrochemical reaction kinetics and SA response signal was investigated. A microneedle sensor with three optimized BNVG microelectrodes (3.57 at.% B and 3.27 at.% N) was used to quantitatively analyze SA in the 0.5-100 µM concentration range and pH 4.0-9.0, with limits of detection of 0.14-0.18 µM. Additionally, a quantitative electrochemical model database based on the BNVG microelectrode sensor was constructed to monitor the growth of cucumbers and cauliflowers, which confirmed that the SA level and plant growth rate were positively correlated. Moreover, the SA levels in various vegetables and fruits purchased from the market were measured to demonstrate the practical application prospects for on-site inspection and evaluation.

13.
Angew Chem Int Ed Engl ; : e202406233, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591161

RESUMO

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.

14.
Materials (Basel) ; 17(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591456

RESUMO

In this work, 10 nm scandium-doped aluminum nitride (AlScN) capacitors are demonstrated for the construction of the selector-free memory array application. The 10 nm Al0.7Sc0.3N film deposited on an 8-inch silicon wafer with sputtering technology exhibits a large remnant polarization exceeding 100 µC/cm2 and a tight distribution of the coercive field, which is characterized by the positive-up-negative-down (PUND) method. As a result, the devices with lateral dimension of only 1.5 µm show a large memory window of over 250% and a low power consumption of ~40 pJ while maintaining a low disturbance rate of <2%. Additionally, the devices demonstrate stable multistate memory characteristics with a dedicated operation scheme. The back-end-of-line (BEOL)-compatible fabrication process, along with all these device performances, shows the potential of AlScN-based capacitors for the implementation of the high-density selector-free memory array.

15.
Front Optoelectron ; 17(1): 9, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584213

RESUMO

This paper presents an efficient scheme for single-pixel imaging (SPI) utilizing a phase-controlled fiber laser array and an untrained deep neural network. The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields. Through the utilization of high-speed electro-optic modulators in each individual fiber laser module, the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest. Furthermore, the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images. Through simulations and experiments, we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%. Given its potential for high emitting power and rapid modulation, the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.

16.
Neurotoxicology ; 102: 58-67, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599286

RESUMO

Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38630273

RESUMO

INTRODUCTION: Achieving a slow and smooth electrode array insertion is paramount for preserving structural and functional integrity during cochlear implantation. This controlled study evaluates the efficacy of a metronome-guided insertion technique in enhancing the smoothness and speed of electrode array insertions. METHODS: In a prospective cohort study, patients undergoing cochlear implant surgery between 2022 and 2023 with lateral wall electrode arrays were included. Metronome guidance was delivered through an acoustic signal via headphones during electrode array insertion in cochlear implantation and compared to a control group without metronome-guidance. RESULTS: In total, 37 cases were evaluated, including 25 conventional insertions and 12 metronome-guided insertions. The results indicate that metronome-guided insertions were significantly slower (- 0.46 mm/s; p < 0.001) without extending the overall procedure time. This can be attributed to fewer paused sections observed in the metronome-guided technique. Moreover, metronome-guided insertions exhibited superior performance in terms of insertion smoothness and a reduced number of re-gripping events. CONCLUSIONS: The findings support the recommendation for the systematic application of metronome guidance in the manual insertion of cochlear implant electrode arrays, emphasizing its potential to optimize surgical outcomes.

18.
Magn Reson Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624032

RESUMO

PURPOSE: To demonstrate the performance of gradient array coils in minimizing switched-gradient-induced electric fields (E-fields) and improving peripheral nerve stimulation (PNS) thresholds while generating gradient fields with adjustable linearity across customizable regions of linearity (ROLs). METHODS: A body gradient array coil is used to reduce the induced E-fields on the surface of a body model by modulating applied currents. This is achieved by performing an optimization problem with the peak E-field as the objective function and current amplitudes as unknown variables. Coil dimensions and winding patterns are fixed throughout the optimization, whereas other engineering metrics remain adjustable. Various scenarios are explored by manipulating adjustable parameters. RESULTS: The array design consistently yields lower E-fields and higher PNS thresholds across all scenarios compared with a conventional coil. When the gradient array coil generates target gradient fields within a 44-cm-diameter spherical ROL, the maximum E-field is reduced by 10%, 18%, and 61% for the X, Y, and Z gradients, respectively. Transitioning to a smaller ROL (24 cm) and relaxing the gradient linearity error results in further E-field reductions. In oblique gradients, the array coil demonstrates the most substantial reduction of 40% in the Z-Y direction. Among the investigated scenarios, the most significant increase of 4.3-fold is observed in the PNS thresholds. CONCLUSION: Our study demonstrated that gradient array coils offer a promising pathway toward achieving high-performance gradient coils regarding gradient strength, slew rate, and PNS thresholds, especially in scenarios in which linear magnetic fields are required within specific target regions.

19.
Epigenetics ; 19(1): 2333660, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38564759

RESUMO

DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC v1.0 arrays. We conducted a comprehensive assessment of the EPIC v1.0 array probe reliability using 69 blood DNA samples, each measured twice, generated by the Alzheimer's Disease Neuroimaging Initiative study. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliability information for probes on the EPIC v1.0 array, will serve as a valuable resource for future DNAm studies.


Assuntos
Metilação de DNA , Locos de Características Quantitativas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes , Ilhas de CpG
20.
Mikrochim Acta ; 191(5): 254, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594554

RESUMO

A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "µM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 µM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...